loki2.models.utils.blocks ========================= .. py:module:: loki2.models.utils.blocks .. autoapi-nested-parse:: Building blocks for neural network architectures. This module provides reusable convolutional and deconvolutional blocks for use in segmentation networks. Module Contents --------------- .. py:class:: Conv2DBlock(in_channels: int, out_channels: int, kernel_size: int = 3, dropout: float = 0) Bases: :py:obj:`torch.nn.Module` Conv2D block with convolution, batch normalization, ReLU, and dropout. :param in_channels: Number of input channels for convolution. :param out_channels: Number of output channels for convolution. :param kernel_size: Kernel size for convolution. Defaults to 3. :param dropout: Dropout rate. Defaults to 0. .. py:attribute:: block .. py:method:: forward(x) .. py:class:: Deconv2DBlock(in_channels: int, out_channels: int, kernel_size: int = 3, dropout: float = 0) Bases: :py:obj:`torch.nn.Module` Deconvolution block with ConvTranspose2d, Conv2d, batch normalization, ReLU, and dropout. :param in_channels: Number of input channels for deconv block. :param out_channels: Number of output channels for deconv and convolution. :param kernel_size: Kernel size for convolution. Defaults to 3. :param dropout: Dropout rate. Defaults to 0. .. py:attribute:: block .. py:method:: forward(x)