loki2.psdtime
Utility helpers for pseudotime inference, clustering, and visualization.
Module Contents
- loki2.psdtime.write_txt(file_path: str | pathlib.Path, data: Iterable[str]) None
Write one entry per line to a text file.
- Parameters:
file_path – Path to the output text file.
data – Iterable of strings to write, one per line.
- loki2.psdtime.load_txt(file_path: str | pathlib.Path) numpy.ndarray
Read a text file that has one value per line and return a string array.
- Parameters:
file_path – Path to the input text file.
- Returns:
Array of strings, one per line in the file.
- Return type:
np.ndarray
- loki2.psdtime.get_kmeans(x: numpy.ndarray, target_clusters: int = 10, scale: bool = False) numpy.ndarray
Cluster observations using k-means and return the cluster labels.
- Parameters:
x – Input data array of shape (n_samples, n_features).
target_clusters – Number of clusters to form. Defaults to 10.
scale – Whether to standardize the data before clustering. Defaults to False.
- Returns:
Cluster labels as string array of shape (n_samples,).
- Return type:
np.ndarray
- loki2.psdtime.get_umap(embedding: Any, n_components: int = 3, random_state: int | None = 2024, n_neighbors: int = 15, init: str = 'pca', metric: str = 'cosine') numpy.ndarray
Run UMAP on the provided embedding and return the transformed coordinates.
- Parameters:
embedding – Input embedding matrix (will be converted to NumPy array).
n_components – Number of dimensions for the reduced space. Defaults to 3.
random_state – Random seed for reproducibility. Defaults to 2024.
n_neighbors – Number of neighbors for UMAP. Defaults to 15.
init – Initialization method. Defaults to ‘pca’.
metric – Distance metric. Defaults to ‘cosine’.
- Returns:
UMAP-transformed coordinates of shape (n_samples, n_components).
- Return type:
np.ndarray
- loki2.psdtime.get_pca(embedding: Any, n_components: int = 15) numpy.ndarray
Project embedding onto PCA axes.
- Parameters:
embedding – Input embedding matrix (will be converted to NumPy array).
n_components – Number of principal components. Defaults to 15.
- Returns:
PCA-transformed coordinates of shape (n_samples, n_components).
- Return type:
np.ndarray
- loki2.psdtime.infer_pseudotime_palantir(ad: Any, start_cell: str, output_dir: str | pathlib.Path, name: str, *, n_components: int = 15, knn: int = 100, num_waypoints: int = 500) None
Run Palantir pseudotime inference on AnnData object and persist plots/results.
The defaults mirror prior behavior; override if you want a different UMAP dimensionality, neighborhood size, or waypoint density.
- Parameters:
ad – AnnData object containing single-cell data.
start_cell – Cell ID to use as the starting point for pseudotime.
output_dir – Directory to save output plots and results.
name – Name identifier for output files.
n_components – Number of components for multiscale space. Defaults to 15.
knn – Number of nearest neighbors for graph construction. Defaults to 100.
num_waypoints – Number of waypoints for trajectory inference. Defaults to 500.