loki.align.DeformableRegistration

class loki.align.DeformableRegistration(alpha=None, beta=None, low_rank=False, num_eig=100, *args, **kwargs)

Deformable registration. Adapted from Pure Numpy Implementation of the Coherent Point Drift Algorithm: https://github.com/siavashk/pycpd

alpha

Represents the trade-off between the goodness of maximum likelihood fit and regularization.

Type:

float (positive)

beta

Width of the Gaussian kernel.

Type:

float(positive)

low_rank

Whether to use low rank approximation.

Type:

bool

num_eig

Number of eigenvectors to use in lowrank calculation.

Type:

int

__init__(alpha=None, beta=None, low_rank=False, num_eig=100, *args, **kwargs)

Methods

__init__([alpha, beta, low_rank, num_eig])

expectation()

Compute the expectation step of the EM algorithm.

get_registration_parameters()

Return the current estimate of the deformable transformation parameters.

iterate()

Perform one iteration of the EM algorithm.

maximization()

Compute the maximization step of the EM algorithm.

register([callback])

Perform the EM registration.

transform_point_cloud([Y])

Update a point cloud using the new estimate of the deformable transformation.

update_transform()

Calculate a new estimate of the deformable transformation.

update_variance()

Update the variance of the mixture model using the new estimate of the deformable transformation.