celldancer.simulation.simulate¶
- celldancer.simulation.simulate(kinetic_type, alpha1=None, alpha2=None, beta1=None, beta2=None, gamma1=None, gamma2=None, start_splice1=None, start_splice2=None, start_unsplice1=None, start_unsplice2=None, path1_pct=None, path2_pct=None, path1_cell_number=None, path2_cell_number=None, noise_level=0.2)¶
Simulate a gene with the kinetic type of mono-kinetic, multi-forward, multi-backward, or transcriptional boost.
- Parameters
kinetic_type (pandas.DataFrame) – kinetic_type could be selected from [‘mono’, ‘multi_forward’, ‘multi_backward’, ‘tran_boost’]
alpha1 (float (default: None)) – The simulated alpha (transcriptional rate) for the first lineage. This parameter is valid when kinetic_type is set to ‘mono’, ‘multi_forward’, or ‘tran_boost’.
alpha2 (float (default: None)) – The simulated alpha (transcriptional rate) for the second lineage. This parameter is valid when kinetic_type is set to ‘multi_forward’ or ‘tran_boost’.
beta1 (float (default: None)) – The simulated beta (splicing rate) for the first lineage.
beta2 (float (default: None)) – The simulated beta (splicing rate) for the second lineage.
gamma1 (float (default: None)) – The simulated gamma (degration rate) for the first lineage.
gamma2 (float (default: None)) – The simulated gamma (degration rate) for the second lineage.
start_splice1 (optional, float (default: None)) – The simulated spliced abundance for the first lineage. Cells start from a region at a point of (start_splice1, start_unsplice1) to decrease. This parameter is valid when kinetic_type is set to ‘multi_backward’.
start_splice2 (optional, float (default: None)) – The simulated spliced abundance for the second lineage. Cells start from a region at a point of (start_splice2, start_unsplice2) to decrease. This parameter is valid when kinetic_type is set to ‘multi_backward’.
start_unsplice1 (optional, float (default: None)) – The simulated unspliced abundance for the first lineage. Cells start from a region at a point of (start_splice1, start_unsplice1) to decrease. This parameter is valid when kinetic_type is set to ‘multi_backward’.
start_unsplice2 (optional, float (default: None)) – The simulated unspliced abundance for the second lineage. Cells start from a region at a point of (start_splice2, start_unsplice2) to decrease. This parameter is valid when kinetic_type is set to ‘multi_backward’.
path1_pct (optional, float (default: None)) – To decrease the bias of cell distribution at the steady point in the first lineage. This parameter is valid when kinetic_type is set to ‘mono’, ‘multi_forward’ or ‘tran_boost’.
path2_pct (optional, float (default: None)) – To decrease the bias of cell distribution at the steady point in the second lineage. This parameter is valid when kinetic_type is set to ‘mono’, ‘multi_forward’ or ‘tran_boost’.
path1_cell_number (float (default: None)) – The number of cells to be generated in the first lineage.
path2_cell_number (float (default: None)) – The number of cells to be generated in the second lineage.
noise_level (float (default: 0.2)) – The noise level to be set.
- Returns
df – The dataframe of one simulated gene.
- Return type
pandas.DataFrame
Example usage:
import celldancer.simulation as cdsim import matplotlib.pyplot as plt # Mono-kinetic plt.figure(figsize=(5,5)) gene=cdsim.simulate(kinetic_type='mono', alpha1=1, alpha2=0, beta1=1, beta2=1, gamma1=1, gamma2=1, path1_pct=99, path2_pct=99, path1_cell_number=1000, path2_cell_number=1000) plt.scatter(gene.splice,gene.unsplice,c='#95D9EF',alpha=0.5) # Multi-lineage forward branching plt.figure(figsize=(5,5)) gene=cdsim.simulate(kinetic_type='multi_forward', alpha1=5, alpha2=1, beta1=1, beta2=0.5, gamma1=5, gamma2=0.25, path1_pct=99, path2_pct=99, path1_cell_number=1000, path2_cell_number=1000) plt.scatter(gene.splice,gene.unsplice,c='#95D9EF',alpha=0.5) # Multi-lineage backward branching plt.figure(figsize=(5,5)) gene=cdsim.simulate(kinetic_type='multi_backward', beta1=1, beta2=1, gamma1=1, gamma2=1, start_splice1=1, start_splice2=1.5, start_unsplice1=1, start_unsplice2=0.2, path1_cell_number=1000, path2_cell_number=1000) plt.scatter(gene.splice,gene.unsplice,c='#95D9EF',alpha=0.5) # Transcriptional boost plt.figure(figsize=(5,5)) gene=cdsim.simulate(kinetic_type='tran_boost', alpha1=2, alpha2=5, beta1=2, beta2=2, gamma1=1, gamma2=1, path1_pct=99, path2_pct=80, path1_cell_number=1000, path2_cell_number=1000) plt.scatter(gene.splice,gene.unsplice,c='#95D9EF',alpha=0.5)