celldancer.to_dynamo¶
- celldancer.to_dynamo(cellDancer_df)¶
Convert the output dataframe of cellDancer to the input of dynamo. The output of this function can be directly used in the downstream analyses of dynamo.
Example usage:
import dynamo as dyn import numpy as np import pandas as pd import anndata as ann import matplotlib.pyplot as plt import celldancer as cd import celldancer.utilities as cdutil # load the prediction result of all genes, the data could be achieved from section 'Deciphering gene regulation through vector fields analysis in pancreatic endocrinogenesis' cellDancer_df=pd.read_csv('HgForebrainGlut_cellDancer_estimation_spliced.csv') cellDancer_df=cd.compute_cell_velocity(cellDancer_df=cellDancer_df, projection_neighbor_choice='embedding', expression_scale='power10', projection_neighbor_size=100) # compute cell velocity # transform celldancer dataframe to anndata adata_from_dancer = cdutil.to_dynamo(cellDancer_df) # plot the velocity vector dyn.pl.streamline_plot(adata_from_dancer, color=["clusters"], basis = "cdr", show_legend="on data", show_arrowed_spines=True)
- Parameters
cellDancer_df (pandas.DataFrame) –
The output dataframe of cellDancer.
cellDancer –> dynamo
cellDancer_df.splice –> adata.X
cellDancer_df.loss –> adata.var.loss
cellDancer_df.cellID –> adata.obs
cellDancer_df.clusters –> adata.obs.clusters
cellDancer_df.splice –> adata.layers[‘X_spliced’]
cellDancer_df.splice –> adata.layers[‘M_s’]
cellDancer_df.unsplice –> adata.layers[‘X_unspliced’]
cellDancer_df.unsplice –> adata.layers[‘M_u’]
cellDancer_df.alpha –> adata.layers[‘alpha’]
cellDancer_df.beta –> adata.layers[‘beta’]
cellDancer_df.gamma –> adata.layers[‘gamma’]
cellDancer_df.unsplice_predict - cellDancer_df.unsplice –> adata.layers[‘velocity_U’]
cellDancer_df.splice_predict - cellDancer_df.splice –> adata.layers[‘velocity_S’]
cellDancer_df[[‘embeddding1’, ‘embedding2’]] –> adata.obsm[‘X_cdr’]
cellDancer_df[[‘velocity1’, ‘velocity2’]] –> adata.obsm[‘velocity_cdr’]
- Return type
adata